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ABSTRACT

LKAB operates the Kiruna underground iron ore mine, which utilizes a min-

ing method known as large-scale sublevel caving. To optimize production scheduling

at Kiruna, we present a combined (short- and long-term) resolution model using

mixed-integer programming. The model, which incorporates various operational re-

quirements unique to sublevel caving, minimizes deviations from demand to produce

a schedule containing monthly time periods. However, the resulting model is large

and solution times for schedules of requisite length are excessive. To expedite solution

time, we develop a decomposition-based heuristic consisting of two phases: (i) solving

five subproblems, and (ii) solving a modified version of the original model based upon

information gained from the subproblem solutions. We compare the performance of.

the heuristic to solving the original model directly on 15 datasets. On average, we

find that our heuristic obtains better solutions faster than solving the original prob-

lem directly. We present various limitations to our approach and suggest possible

extensions by modifying the heuristic when solving for schedules of greater length.
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Chapter 1

INTRODUCTION AND BACKGROUND

The Loussavaara-Kiirunavaara Aktiebolag (LKAB) company operates the Kiruna

mine, located above the Arctic circle in northern Sweden. Currently the second largest

underground mine in the world, Kiruna has been operational for more than a cen-

tury. The mine employs about 600 workers and produces approximately 24 million

tons of iron ore per year in the form of three raw iron ore products: B1, B2, and

D3. These raw products are used to supply planned production quantities at four

ore post-processing plants, or mills. The ore products, classified according to their

phosphorous content, are processed into fines and pellets, both of which are used as

raw materials in the manufacture of steel end-products.

The Kiruna ore body is a high-grade magnetite deposit which is, on average, 4

kilometers long and 80 meters (m) wide. Phosphorus (P) is the primary contaminant

and its presence directly determines the ore type. The B1 and B2 ore types, which are

low-phosphorus, high-iron (Fe) magnetites, contain approximately 0.06% and 0.20%

phosphorus, respectively, and together constitute about 80% of the deposit. The

mills use B1 to make high-quality fines, while B2 is transformed into medium-grade

pellets. The remaining 20% of the ore body is D3 ore, which is a high-phosphorus

(average 2%), apatite-rich magnetite processed by the mills into low-quality pellets.

Potassium (K20) is another contaminant with typical levels less than 0.15%.

Production scheduling at the Kiruna mine intends to satisfy, with minimum

deviation, the target production quantities set by the mills; both over- and under-
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production are undesirable. The production schedule, typically spanning multiple

years with monthly resolution, should provide the ore extraction sequence and tim-

ing over the planning horizon. In the past, manual schedulers, even with computer

spreadsheet tools, were extremely limited in considering possible schedules, at times

expending considerable effort to simply achieve a feasible production schedule. More

recently, Kiruna has turned to mathematical programming, and a long-term (strategic

planning) optimization model is currently being used to plan production.

Kiruna began mining operations in 1898, extracting iron ore exclusively via sur-

face methods. By about 1952, the pit deepened to such an extent that it became

more cost-effective to mine underground. The underground mining method Kiruna

currently employs is known as large-scale sublevel caving. This method is well-suited

for extracting ore from vertically positioned, fairly pure, large, vein-like deposits. The

mine is divided into ten main production areas, about 400 to 500 m in length. Each

production area has its own group of ore passes; such a group is also known as a shaft

group. A shaft group is located at the center of each production area, and extends

down to the main level. Each production area consists of about 10 sublevels, and

entry to these sublevels is gained via access ramps. Currently, the mine is producing

down to the 1,045 m sublevel.

One or two 25-ton-capacity electric Load Haul Dump units (LHDs) operate on a

sublevel within each production area and transport the ore from the crosscuts (from

which the ore is extracted) to the ore passes, where loaded trains haul the ore to

a crusher. At the crusher, the ore is broken into pieces small enough to be hoisted

to the surface via vertical shafts. Up to 25 LHDs can operate daily throughout the

mine; however, the allowable number of LHDs within each shaft group is restricted to

about two or three to prevent LHD operators from driving over and damaging other
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LHD cables.

Figure 1.1 illustrates the relationship between production areas, ore passes, sub-

levels and ore haulage routes. See Topal (2003) for a more detailed description of the

Kiruna mine and its characteristics.

wanqtn wall~
ProdJuction 4
8Ia6ng and

loadnghI

if

Figure 1.1. An example of sublevel caving (Altas Copco, 2005).

The site on which each LHD operates is also referred to as a machine placement.

The number of machine placements that can be started in a given time period is

restricted due to the availability of the crew that prepares the machine placement to

start to be mined. The number of active machine placements, i.e., machine placements

currently being mined, is also restricted due to LHD availability. Each machine

placement belongs to a unique shaft group. A machine placement averages 200 to
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500 m in length and contains from one to three million tons of ore and waste rock.

A machine placement possesses the same height as the mining sublevel and extends

from the hangingwall to the footwall. Between five and fifteen smaller (100 m) entities

known as production blocks constitute a machine placement. About one month is

required to mine each production block. If a machine placement is left partially

mined, old explosives (which only have a life of about 30 days) must be replaced

to blast the solidified cave rock. This requirement, coupled with the aggravation of

tracking partially-mined machine placements, results in operational restrictions that

require continuous production within a machine placement until all available ore has

been removed.

Whether a machine placement can (or must) be mined depends on the relative

position of machine placements that have started to be mined. Specifically, certain

machine placements beneath a given machine placement cannot start to be mined

until some portion of the given machine placement has been mined, and machine

placements to the right and left of a given machine placement must start to be mined

after a specified portion (typically, 50%) of the given machine placement has been

mined (to prevent blast damage on adjacent machine placements). These operational

constraints are referred to as vertical and horizontal sequencing constraints, respec-

tively.

Each machine placement possesses a series of notional drawdown lines consisting

of several production blocks each. Within a machine placement, the order in which

production blocks must be mined is regulated by this series of drawdown lines, which

also helps to enforce continuous mining of a machine placement. These drawdown

lines cut horizontally or at a 45 degree angle though several blocks within the ma-

chine placement and preclude production blocks in a drawdown line underneath a
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given drawdown line from being extracted until all ore in the given drawdown line is

extracted. This mining pattern is necessary to correctly execute the sublevel caving

method so that the mined out areas do not collapse on top of ore that is yet to be

retrieved. We illustrate the sequencing relationships, along with drawdown lines, in

Figure 1.2. Minimum and maximum production levels per month govern the rate at

which the blocks within a machine placement are mined. These rates ensure con-

tinuous mining of machine placements, as discussed above, as well as adherence to

production capacity restrictions. Because of vertical and horizontal sequencing con-

straints and the relative positions of machine placements and the production blocks

within them, there are only certain time periods in which these can be mined.

Machine ', Machine / Machine
Placement c' Placement a Placement c

Machine ----
SPlacement b .. ..........

.............. ............. ..-- - - -..-- - -

Figure 1.2. A depiction of six machine placements. The vertical sequencing requires
that at least 50% of machine placement a be mined before beginning to mine machine
placement b. The horizontal sequencing requires that machine placements c' and c"
begin to be mined once 50% of machine placement a is mined. Dotted lines divide the
machine placements in the lower corners into 9 production blocks each, with dashed
drawdown lines at either a 45-degree angle or parallel to the surface.
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Chapter 2

LITERATURE REVIEW

We divide the relevant production scheduling literature by mining method: ei-

ther surface or underground mining. We emphasize the underground mining papers,

and cite specific examples of previous models the Kiruna mine has employed for its

production scheduling.

2.1 Surface Mining

Early applications of mathematical programming in the mining industry pri-

marily focus on open pit (surface) mining, a fundamentally different operation from

underground mining. In an open pit mine, a single pit is dug downward from the

surface; ore grade restrictions must be observed so that waste material is not allowed

to dilute the ore quality. Typical optimization problems focus on determining the

economic "break-even" depth for the pit, called the ultimate pit limits, below which

operations should either terminate or switch to underground mining methods. The

Kiruna mine itself was a surface mine until 1952 when underground mining com-

menced.

In a seminal work, Lerchs & Grossman (1965) develop a graph-theoretic algo-

rithm for optimally calculating the ultimate pit limits. To improve the efficiency

of the solution method, others (e.g., Underwood & Tolwinski, 1998; Hochbaum &

Chen, 2000) utilize a dual simplex algorithm and maximum flow algorithms, respec-

tively. Winkler & Griffin (1998) use a linear programming (LP) formulation with
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multiple objectives to maximize profit while meeting ore blending and mine work-

load goals. Wilke & Reimer (1977) also formulate a linear program to produce a

short-term schedule for an open pit iron ore mine. Their model maximizes mining

ore blocks assigned highest priority with respect to ore quality. Though the con-

straints appropriately model various features of surface mining, such as ore blending

and equipment capacity requirements, achieving practical schedules requires iterative

manual interaction.

In order to model discrete decisions for mine production scheduling, variables

constrained to integer values are necessary. Mixed-integer programming (MIP) for-

mulations prove much less tractable than comparable linear programming models.

Tractability is the ease with which an optimization model is solved and analyzed.

Barbaro & Ramani (1986), along with Smith (1998), provide examples in which MIP

is applied to open pit mines. Barbaro and Ramani maximize total profit and include

facility location decisions, which necessitate integer variables. The small problem in-

stance that they solve contains only 10 binary variables, so tractability is not an issue.

Smith models production scheduling decisions with variables representing whether to

mine a block or not. Because each production decision requires its own binary vari-

able, the resulting problem is very large, even for a short mining schedule. He restricts

the model to a single time period in a silver and gold surface mining operation. The

objective function minimizes deviations from production goals with respect to silver,

gold, and waste rock.

2.2 Underground Mining

Within the underground mining literature, we find applications of various mining

methods. We first explore models of other mining methods, then turn specifically to
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Kiruna models, which are based on its sublevel caving method.

2.2.1 General Underground Mining Models

Scheduling of underground mining operations is primarily characterized by dis-

crete decisions to mine blocks of ore, along with complex sequencing relationships

between blocks. Due to these complex relationships, formulation as a strict net-

work flow problem is typically not appropriate. Since LP models cannot capture the

discrete decisions required for scheduling, MIPs are generally the more appropriate

mathematical programming model. Integer decision variables represent whether to

mine a block of ore in a particular time period, which is the essence of production

scheduling in an underground context.

Because MIPs are computationally more complex to solve than LPs, solution

techniques involving relaxing integer variables to assume continuous values have been

devised. For example, Williams et al. (1972) plan sublevel stoping operations for an

underground copper mine over one year. They use a linear programming approxima-

tion model to determine the amount of ore to be mined per month from each stope.

The objective function minimizes deviations between successive months, seeking to

produce a well-balanced schedule. Because their goal is merely to generate higher

quality schedules than the then-current manual trial-and-error method, continuous

variables suffice. More recently, Jawed (1993) formulates a linear goal program for

production planning in an underground room-and-pillar coal mine. The decision

variables determine the amount of ore to be extracted and the objective function

minimizes production deviations from target levels, though only for a single time pe-

riod. Note that these two models compromise schedule quality and the length of the

time horizon, respectively. Tang et al. (1993) integrate linear programming with sim-
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ulation to address scheduling decisions, as does Winkler (1998). The linear program

handles the continuous variables, which determine the amount of ore to extract; the

simulation model evaluates discrete scheduling decisions. In these two examples, the

applications consist of only a single time period and/or cannot guarantee optimal

solutions because the technique iteratively fixes variable values and optimizes only a

portion of the scheduling problem.

Trout (1995) was perhaps the first to try integer programming for optimizing

underground mine production schedules. By maximizing net present value, his model

schedules an underground stoping mine for base metals (e.g., copper sulphide). The

constraint set incorporates block sequencing, equipment capacity, and backfill indi-

cators. However, his attempt does not achieve optimality since, after 200 hours, the

algorithm terminates early when the computer reaches memory capacity. Winkler

(1996) models production scheduling in an underground coal mine to minimize fixed

and variable extraction costs, but limits his model to a single time period.

Several years later, researchers formulate more tractable MIP models. Carlyle &

Eaves (2001) present a model that maximizes revenue from Stillwater's platinum and

palladium mine which uses the sublevel stoping mining method. The problem focuses

on strategic mine expansion planning, so the integer decision variables schedule the

timing of various mining activities: development and drilling, and stope preparation.

Although the formulation relaxes integrality constraints for variables tracking the

amount of ore extracted, the model returns near-optimal solutions for a 10-quarter

time horizon. Smith et al. (2003) incorporate a variety of features into their lead and

zinc underground mine model, including sequencing relationships, capacities, and

minimum production requirements. However, theysignificantly reduce the resolution

of the model by aggregating stopes into larger blocks. The resulting model, with
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time periods of one-year length, maximizes net present value over the life of the

mine (here, 13 years). The model generates near-optimal results in less than an

hour. The authors note that further research should refine the level of detail to

account for ore grade fluctuations and block sequencing considerations. Sarin &

West-Hansen (2005) schedule a coal mining operation to maximize net present value

less penalties for irregular schedules. They expedite the solution time for their model

with a Benders' decomposition-based methodology. We note that none of the previous

examples applies optimization to the sublevel caving mining method used at Kiruna.

2.2.2 Kiruna-Specific Models

Over the last decade, successive efforts at production scheduling for the Kiruna

mine sought a schedule of requisite length in a reasonable amount of solution time.

Using the machine placement as the basic mining unit, initial attempts significantly

shorten the time horizon, sacrificing schedule quality. Almgren (1994) considers a

one-month time frame; hence, in order to generate a five-year schedule, he runs the

model 60 times. In a similar vein, Topal (1998) and Dagdelen et al. (2002) iteratively

solve one-year subproblems (with monthly resolution) in order to achieve production

plans for five-year and seven-year time horizons, respectively. These three models

provide suboptimal solutions because they myopically disregard the effects of subse-

quent time periods outside the horizon length. Additionally, Kuchta (2002) develops

a computer-assisted manual heuristic scheduling program. However, he admits that

it is common to abandon partial schedules and restart the procedure due to the dif-

ficulty of satisfying target demands and the inability to assess the future impact of

current scheduling decisions.
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Kuchta et al. (2004) consider a five-year time horizon and three ore types, and

significantly improve model tractability by redefining the decision variables and by as-

signing earliest and latest possible start dates for mining machine placements. These

early and late start pre-processing assignments substantially reduce the number of

binary variables in the model, resulting in a near-optimal schedule in a matter of

minutes. In an implementation consisting of two ore types, Newman & Kuchta (in

press) aggregate binary variables, effectively collapsing the time periods into multi-

period "windows;" the solution to this aggregation problem allows elimination of all

but a "reasonably good" set of starting times for each machine placement, restrict-

ing the model to a subset of start date choices beyond the restrictions determined

with the early and late start algorithms. The restricted dates are then applied to the

original problem, resulting in optimal three-year production schedules with monthly

resolution in less than an hour.

Given the most recent advances with efficient MIP formulations and faster solu-

tion times, model progression calls for finer resolution in terms of mineable block size.

For the Kiruna mine, this means modeling at the production block level. Additionally,

extra features must be incorporated to allow more realistic schedules that accurately

mimic actual progression of mining operations (e.g., drawdown lines). Newman et al.

(to appear) present such a model with combined resolution incorporating three ore

types. Short-term decisions concern mining of production blocks and drawdown lines,

while in the long-term, decisions model mining of entire machine placements only.
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Chapter 3

MODEL

The objective of production scheduling at Kiruna is to minimize deviations from

target quantities (demand) for each ore type. Due to company policy, LKAB does

not stockpile iron ore. Specifically, there is physically no space in which to store

more than about 50 ktons of extracted iron ore. Because of this guideline, we do not

use inventory constraints. Furthermore, because LKAB's goal is to meet demand as

closely as possible in each time period so as to regulate the amount of ore processed

at the mills, a shortage in one time period cannot be compensated by a surplus in,

say, the following time period.

3.1 Combined Resolution Model Features

Currently, Kiruna uses a long-term production scheduling model (Kuchta et al.,

2004) to strategically plan its ore extraction sequence. This long-term model is a

mixed-integer program that minimizes deviations from planned production targets

using hundreds of binary variables representing whether or not to mine a specific

machine placement in each month of the planning horizon. A restriction forces con-

tinuous mining of a machine placement once the machine placement has started to be

mined, which, in turn, forces production blocks to be mined in a fixed sequence and

at a fixed time. The model also considers the sequencing restrictions (both vertical

and horizontal) between machine placements and physical limitations of the mine,

particularly with regard to shaft group and equipment capacities. Specifically, the
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currently existing features in the Kiruna mathematical programming model are:

"* accounting constraints that monitor deviations from target production levels in

terms of ore type per time period;

"* vertical sequencing constraints that prevent mining a given machine placement

until 50% of a vertically constraining machine placement is mined;

"* horizontal sequencing constraints that force mining a given machine placement

when 50% of an adjacent machine placement is mined;

"* shaft group constraints that restrict the number of operational LHDs within a

shaft group during a single time period;

"* operational constraints that limit the number of machine placements that can

start to be mined during a single time period.

We modify the long-term model to comprise several levels of detail. At the coarser

(original) level of detail, binary decision variables indicate which machine placements

to start mining each month. For machine placements that are currently active, we

model decisions at a finer level of detail, with continuous variables representing how

much to mine from each production block in each month. Correspondingly, another

set of binary variables tracks which drawdown lines have finished being mined, or

equivalently, which production blocks constituting a drawdown line have all finished

being mined. This extra level of detail allows the model to more closely control the

amount and types of ore that are extracted from each machine placement in the

short-term planning horizon. Accordingly, when integrating the short-term detail,

constraints must be added that maintain the sequencing requirements and operational

limitations of the mine. Note also that constraints are required to relate the short- and
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long-term resolutions. Specifically, we must consider the sequencing between machine

placements modeled as production blocks and drawdown lines (short-term resolution),

and those machine placements modeled as single entities (long-term resolution). We

categorize these additional constraints that incorporate the short-term resolution as

follows:

"* production block constraints that limit the amount extracted from a production

block at the amount of reserves available within that production block;

"* drawdown line completion constraints that indicate when a drawdown line has

been completely mined out;

"• drawdown line sequencing constraints that prevent underlying drawdown lines

from being mined until the overlying drawdown line has been completely ex-

tracted;

"* vertical sequencing constraints both between production blocks and drawdown

lines (in machine placements modeled with short-term resolution), and also

between drawdown lines and machine placements modeled with long-term res-

olution;

"• horizontal sequencing constraints that force mining a machine placement (long-

term resolution) when, for an adjacent machine placement (short-term resolu-

tion), the drawdown line indicating at least 50% of total ore in the machine

placement has been extracted;

"* production-rate constraints that regulate both minimum and maximum monthly

production rates;
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0 short-term demand constraints that enforce mining exactly the amount de-

manded for each of the first six time periods, regardless of ore type.

3.2 Mathematical Formulation

A complete mathematical formulation of the combined short- and long-term

model follows:

SETS:

"* K = set of ore types

"* V = set of shaft groups

"* A = set of machine placements

"* A, = set of machine placements in shaft group v

"* IA = set of inactive machine placements

SA' = set of machine placements whose start date is restricted vertically by

machine placement a

* AA = set of machine placements whose start date is forced by adjacency to

machine placement a

"* At - set of machine placements that can start to be mined in time period t

"• B set of production blocks

"• Ba = set of production blocks in machine placement a

A B1 = set of production blocks in drawdown line I
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* Bt set of production blocks that can be mined in time period t

* L = set of drawdown lines

* La, last (i.e., most deeply positioned) drawdown line in machine placement a

e LC = set of drawdown lines constrained by another drawdown line

* L= set of drawdown lines that vertically constrain drawdown line 1

a La' = drawdown line whose finish date vertically restricts starting to mine ma-

chine placement a

a LI = drawdown line whose finish date forces the start date of machine place-

ment a by adjacency

* Lt set of drawdown lines that can be mined in time period t

* T set of time periods composing the long-term time horizon

* T set of time periods composing the short-term time horizon (C T)

* Ta set of time periods in which machine placement a can start to be mined

(restricted by machine placement location and the start dates of other relevant

machine placements)

e Tb = set of time periods in which production block b can be mined (restricted

by production block location and the start dates of other relevant production

blocks)

* T, = set of time periods in which drawdown line 1 can finish being mined (re-

stricted by drawdown line location and the finish times of other relevant draw-

down lines)
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* T = time period by which all production blocks in drawdown line 1 must finish

being mined

PARAMETERS:

* Pt = penalty associated with deviations in time period t (= ITI + 1 - t)

* LHDt = maximum number of machine placements that can start to be mined

in time period t

* LHDV = maximum number of active machine placements in shaft group v

"* dkt = target demand for ore type k in time period t (ktons)

"* rat'tk = reserves of ore type k available at time t in machine placement a given

that the machine placement started to be mined at time t' (ktons)

1 if machine placement a is being mined at time t given that

"* Pat't = it started to be mined at time t'

0 otherwise

"* Rbk = reserves of ore type k contained in production block b (ktons)

"* Cat = minimum production rate of machine placement a in time period t (ktons

per time period)

"* Cat = maximum production rate of machine placement a in time period t (ktons

per time period)

DECISION VARIABLES:

"* 4kt = deviation above the target demand for ore type k in time period t (ktons)
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0 zkt = deviation below the target demand for ore type k in time period t (ktons)

• Xbt = amount of ore mined from production block b in time period t (ktons)

1 if we finish mining all blocks contained in drawdown line I

* Wit = by time period t

0 otherwise

{ 1 if we start mining machine placement a at time period t
* Yat =

0 otherwise

Formulation:

(P):

min (Pt)(t + kt)
k,t

subject to:

ZrattkyatRbk +Xbt Z- Zkt -zkt dkt V k E K, t E T (3.1)
aEAt t'ETa,<t beBt kEK Rbk

E E E Z ,at'tkYat',+E Xbt= dkt VeT t- (3.2)
aEAt kEK t'ETa,<t bcBt kcK

Z Z Pat'tYat'+ + E (1-wi) LHDv VveV, tETTitt (3.3)
aGAfnAt, t'CTa,•t aEAv IELanLt

E Yat LHDt V t ••T (3.4)
aIA nAt

Y, xbt Rbk V b B B (3.5)

tCTb kEK

X 5xbŽ -RbkWt V, 1 ,L,tET, (3.6)
bEB, u5t bEB, kEK

Xbu•• < RbkWit VIE LC,bE B,,E L,tET[ (3.7)
u<_t kcK
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Z Xbt -Cat VaEA, lELa, tETi (3.8)
beBafBt

S Xbt _ _Cat(1 W) V a c A, 1 E La, t e T, (3.9)
beBafBt

wl Ž yat Va c A,&• e AVa,l nL,t E Ta (3.10)

y Yat>_w, VaEA,&EAj,1cLJ,iETj (3.11)
tcTa ,•<t

5 Yat Ya't, V a E A, a' E Avt' E Ta,,a' $ a (3.12)
tETa

NYat, > Yat V a E A, a' E A?ý, t E Ta, a' #a (3.13)

kt, Zkt 0 V k, t; Xbt > 0 V b, t; wI binary V l, t; Yat binary V a, t (3.14)

The objective function measures the total weighted tons of deviation, placing

more emphasis on exactly meeting demand in the short-term time horizon. Not only

does the weighting scheme place a greater penalty on more important shortfalls, but

it also breaks symmetry which helps to guide the search algorithm. Constraints (3.1)

record for each ore type and time period the amount in excess or short of the target

demand of ore production. Constraints (3.2) require that for each time period in the

short term planning horizon (typically, six months), the exact total target amount of

ore required, regardless of ore type, is mined. This requirement prevents the post-

processing mills from sitting idle. Constraints (3.3) limit the maximum number of

active machine placements in each shaft group and time period. Constraints (3.4)

restrict the number of long-term machine placements that can be started in a time pe-

riod; short-term machine placements are assumed to be currently active. Constraints

(3.5) preclude mining more than the available reserves within a production block.

Constraints (3.6) relate finishing mining a drawdown line to mining the production
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blocks within that drawdown line. Constraints (3.7) preclude a production block in

a drawdown line from starting to be mined until all blocks in constraining drawdown

lines have been mined. Constraints (3.8) and (3.9) enforce monthly maximum and

minimum production rates, respectively. Constraints (3.10) and (3.11) enforce ver-

tical and horizontal sequencing, respectively, between machine placements modeled

with short-term and long-term resolution. Note that the drawdown line in a machine

placement modeled with short-term resolution both (i) controls access (vertically) to

a constrained machine placement modeled with long-term resolution, and (ii) forces

mining (horizontally) a machine placement modeled with long-term resolution. Con-

straints (3.12) and (3.13) enforce vertical and horizontal sequencing, respectively,

between machine placements modeled with long-term resolution. Finally, constraints

(3.14) enforce non-negativity and integrality, as appropriate. Typical model scenarios

(65 machine placements, 102 production blocks, 3 ore types) that we consider span

three years and contain more than 1000 binary variables and over 2500 constraints.

This Kiruna model differs from typical underground mining formulations (e.g.,

Trout, 1995; Winkler, 1996; Carlyle & Eaves, 2001) in two respects: (i) it does not

account for the difference in costs from mining various machine placements due, for

example, to their location in the mine, and (ii) the objective does not consider the

net present value of ore. With respect to the first issue, we assume that all ore will

be mined eventually, and hence, total mining costs are sunk. Therefore, we need

not consider discrepancies in costs between mining various machine placements. The

second aspect is explained by the difference between the markets for iron ore and

precious metals. Precious metals such as gold and silver are traded on, e.g., the

Commodity Exchange of New York. These metals are bought and sold worldwide,

and the strategy of mines extracting these metals is to maximize profits by producing
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as much as is economically viable given current market prices. By contrast, markets

associated with base metals such as iron ore are regionalized, as transportation costs

are high relative to the value of the commodity. Within these markets, steel companies

enter into a contract with an iron ore producer, settling on a price commensurate

with the chemical and physical characteristics of the iron ore. Large buyers tend

to influence prices in contracts between other buyers and iron ore producers. The

negotiated prices generally hold for about a year, and iron ore producers are obligated

to supply a certain amount of iron ore to each buyer with whom they hold a contract.

Therefore, iron ore mines like Kiruna are concerned with meeting contractual demands

as closely as possible.

Additionally, except for the most recent formulation (Newman et al., to appear),

this model also differs from its predecessors (i.e., Topal, 1998; Dagdelen et al., 2002;

Kuchta et al., 2004) in that it consists of both short- and long-term resolution, in-

creasing problem size and creating a much more difficult problem. In a restatement

of this formulation, Newman et al. (to appear) use a two-year time horizon and

highlight that the combined resolution model reduces total absolute deviations by

approximately 70% over those obtained from a model with only long-term resolution.

We note, however, that this improved solution comes with a significant decrease in

tractability.
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Chapter 4

SOLUTION METHODOLOGIES

In general, MIP solvers apply the branch-and-bound algorithm, which is based

on solving an enumeration tree of LP relaxation problems with some subset of the

variables fixed to integer values. The relaxation problem at each node allows those

integer variables that are not fixed to assume continuous values. At the root node of

the tree, no variables' values are fixed, and an LP relaxation of the original problem is

solved; this solution provides an initial "best bound" on the objective function value.

During the branching procedure, constraints that fix variables assuming fractional

values in a parent-node solution are systematically added and two new LP relaxation

problems are solved at the child nodes. For example, if an LP relaxation solution sets

a binary decision variable equal to 0.79, then the two child branches from this node

would include constraints forcing the variable to assume a value of 0 or 1, respectively.

If more than one variable restricted to be an integer in the original problem assumes a

fractional value, then we select one branching variable arbitrarily. A branch of the tree

is fathomed when: (i) the branch results in an integer-feasible solution, (ii) the branch

cannot result in a better objective function value than the incumbent, best integer-

feasible solution, or (iii) when an LP relaxation problem is infeasible. Accordingly,

when a branch cannot be fathomed, the branching procedure is again applied. The

bounding procedure consists of updating, as necessary, a "best bound" on the optimal

objective function value based on the LP relaxation solutions. The practical runtime

of the algorithm relies both on the ease with which the LP relaxations are solved
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and on the number of relaxations that must be solved, which is a function of the

mathematical structure of the problem. Typically, bounding requires enumeration of

only a fraction of the potential nodes, but in a worst case, full enumeration is required

(see Rardin, 1998).

Although the branch-and-bound procedure eventually results in an optimal solu-

tion, run times of realistically-sized problems can become unwieldy. Some techniques

used to expedite MIP solution times include: (i) eliminating extraneous integer vari-

ables, (ii) decomposing the problem into smaller subproblems and solving these, then

reconstructing a solution to the original problem, and (iii) applying cutting planes,

also known as valid inequalities, which excise integer-infeasible and/or suboptimal

portions from the feasible region via additional constraints. We utilize a combination

of (i) and (ii) to solve our Kiruna scheduling models, but we address, in Chapter 6,

how we are unsuccessful in incorporating (iii) into our solution methodology.

4.1 Variable Elimination

Elimination of extraneous integer variables reduces the potential size of the enu-

meration tree for the branch-and-bound algorithm. This methodology dramatically

improves solution times for previous Kiruna models (e.g., Kuchta et al., 2004; New-

man & Kuchta, in press) that only consist of the long-term resolution (machine place-

ments). We apply similar rules to both sets of binary variables in our model (P), the

yat and wit variables. Based upon the principle of a critical path model (CPM), we

may determine the earliest and latest possible start dates for mining machine place-

ments (see Newman et al., to appear). If we consider a directed, acyclic network,

then every node, except for the source and sink nodes, may represent the activity of

mining a machine placement. We connect nodes i and j with an arc if mining machine
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placement i must directly precede mining machine placement j. The cost associated

with arc (i, j) is the time required to mine machine placement i before we may begin

mining machine placement j. Vertical sequencing constraints (3.12) dictate this du-

ration of time, and require that arcs connect nodes based on the rule that once 50%

of machine placement i is mined out, machine placement j can start to be mined. A

variation of this method, incorporating both horizontal sequencing constraints (3.13)

and LHD availability, allows for the elimination of Yat binary variables corresponding

to time periods before a machine placement's earliest start date and after its latest

start date. We label this restricted set of start dates (for machine placement a) Ta.

Likewise, we apply a similar CPM procedure to the wit binary variables, which indi-

cate completion of a drawdown line, to establish earliest and latest finish dates for

each drawdown line. From these dates, we construct the set TI. Although we model

decisions to finish a drawdown line, as opposed to starting to mine a machine place-

ment, we may apply similar precedence rules to overlying drawdown lines. We can

then eliminate variables that denote finishing to mine a drawdown line either before

its earliest finish date or after its latest finish date.

Although variables tracking the amount of ore mined from each production block

per month (Xbt) are continuous, the same CPM principle can determine early start and

late finish dates for the production blocks by constructing a set Tb. This reduction in

the number of continuous-valued variables is not as effective as binary variable elimi-

nation because it does not directly impact the branch-and-bound procedure. Rather,

elimination of continuous variables allows for faster LP relaxation solutions, which is

not the principal factor affecting branch-and-bound solution times. Additionally, we

may use the early start dates to eliminate irrelevant terms in constraints (3.3).
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For a typical three-year scheduling model, we find that specifying: (i) early and

late starts for machine placements, and (ii) early start, early finish, and late finish

times for both drawdown lines and production blocks reduces the number of binary

variables from over 6000 to under 1200, and the number of continuous variables from

approximately 3900 to slightly less than 700. In addition to the variable elimination

based on exact early and late start and finish dates, in previous research addressing

only the long-term model, Newman & Kuchta (in press) use an optimization-based

heuristic, which they label the aggregation procedure, to further eliminate Yat variables,

as mentioned in Section 2.2.2.

4.2 Decomposition-based Heuristic (7-R)

If we attempt to solve the baseline, three-year instance of (P) directly, we en-

counter extremely long solution times, even with the variable elimination techniques

described in Section 4.1. The use of the early and late start and finish procedures,

along with AMPL and CPLEX presolve algorithms, results in a model containing

1103 binary variables, 687 continuous variables, and 2675 constraints. If we attempt

to solve this model instance to within 5% of optimality, the time required is in excess

of five million seconds, or approximately 60 days. To further expedite solution times,

we turn to heuristic methodologies.

We describe a decomposition-based heuristic that we apply to (P), the monolith

integer program. The goal of the heuristic, which we label (7H), is to achieve near-

optimal solutions more quickly than by solving (P) directly. The heuristic works by

first solving decomposition-based subproblems that are similar to (P), but easier to

solve. Then, we use information from the subproblem solutions to further constrain

the solution space when solving (P). We expect this constrained revision of (P),
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which we label (P'), to solve much faster than attempting to solve (P) directly. Two

potential drawbacks in using a decomposition-based heuristic such as ('H) are that:

(i) the optimal solution may be cut off by the procedure, and (ii) subproblems may

still not solve to optimality very quickly (e.g., within 500 seconds).

We rule out decomposing the problem by time and/or space (via mine geometry)

due to undesirable interaction effects between subproblems. As examples, previous

Kiruna formulations (e.g., Topal, 1998; Dagdelen et al., 2002) result in significantly

suboptimal solutions when applying temporal decomposition. Similarly, spatially

decomposing the model into two or more regions could generate conflicting guidelines

when reconstructing the solution for (P') due to sequencing relationships between

adjacent machine placements from different regions. Another difficulty arises when

apportioning the ore-type demands among the different regions, since the composition

of the ore reserves is not uniform.

The intuition behind our heuristic lies in subproblems, which, instead of utiliz-

ing the typical decomposition techniques mentioned above, emphasize decomposition

with respect to ore type and the nature of the deviation. Recall that the objec-

tive function of (P) seeks minimum deviations from target production quantities; in

essence, the purpose is to balance, for each ore type, both under- and over-deviations.

We formulate subproblems whose objective functions capture aspects of the original

objective function in (P). In our decomposition of the objective function of (P),

we consider subproblem solutions that are "extreme" cases of what may be optimal

values for the decision variables in the solution to (P). We formulate a total of five

subproblems, primarily decomposing the objective function either by ore type or by

the nature of the deviation (i.e., under- vs. over- deviations). This novel decomposi-

tion approach represents the key contribution of our work. We explain in Chapter 7
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how this approach may be applicable to a variety of optimization models.

Each of the first three subproblems penalizes deviations only for a particular

ore type (B1, B2, D3). For subproblem (Pk), where k G {B1, B2, D3}, then, the

objective function reduces to:

min E(pt)(ýkt +--4kt) V k (4.1)
t

Additionally, we alter the constraint set as follows: when calculating deviation from

target production quantities, we allow all three ore types to fulfill demand for the

particular ore type of that subproblem. In this way, we consider that the entire mine

is composed of only one ore type. Specifically, for subproblem (Pk), constraints (3.1)

become:

Z Z Zr at'tkYatl + E Xbt +Z Zkt -'4 dkt Vt ET (4.2)
aCAt tEGTa ,t kGK bCBt

which, assuming three ore types, reduces the number of constraints generated by

2k. We now define subproblem (Pk) with (4.1) as the objective function, subject to

constraints (4.2), and (3.2) through (3.14).

For the remaining two subproblems, we formulate each with a constraint set

identical to that of (P), but with different objective functions. For subproblem (Po),

we penalize only over-deviations, while we penalize only under-deviations for the fifth

subproblem, (Pu). We define (Po) as:

min EZPt-kt (4.3)
k,t
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subject to all constraints (3.1) through (3.14). Similarly, we define (Pu) as:

min Y Pt-kt (4.4)
k,t

subject to all constraints (3.1) through (3.14).

4.2.1 Overview of (-H)

We now outline the decomposition-based procedure as follows:

Heuristic ('H):

Step 1 Solve k + 2 subproblems, (P,), s G {B1, B2, D3, 0, U}.

Step 2 Utilizing information from the subproblem solutions, formulate and append

constraints to (P), forming (P').

2a Append constraints applying to drawdown lines, the wIt variables.

2b Append constraints applying to machine placements, the Yat variables.

2c Append constraints applying to both machine placements and drawdown

lines simultaneously.

Step 3 Solve (P').

We now describe the three steps in detail below, with particular emphasis on Steps

2a through 2c.

4.2.2 Detailed Description of ('H)

We expect the subproblems of Step 1 to solve quickly because fewer tradeoffs

are necessary when optimizing only a component of the objective function of (P).
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Note that all subproblem solutions are feasible for (P), and that the problem size (in

terms of the number of variables and constraints) of each subproblem is similar to

that of (P). When solving (Ps), we impose a time limit to prevent excessive run times

for this phase of (7-R). For the (PD3) and (Pu) subproblems, we place an optimality

gap as an additional stopping criterion. We assume that the five (Ps) subproblems

run in parallel, so the required time to execute this portion of ('H) is the maximum

among the five solution times.

After solving the five subproblems, we utilize the subproblem solutions to for-

mulate additional constraints that we append to (P). We begin by examining the

subproblem solutions with respect to each individual drawdown line 1 in Step 2a.

We note the time period in which each drawdown line is finished being mined. Note

that due to the way we define the wU variables, if a drawdown line is finished being

mined in a particular time period t, then wit,, t' > t (variables representing being

finished with mining a drawdown line in subsequent time periods) may also assume

the value of 1. We begin by defining the following parameter:

Sel,P* = first time period for which wjt = 1 for drawdown line 1 in the solution to

(Ps), E {B1, B2, D3, 0, U}

The el,p, value is the time period in which drawdown line 1 finishes being mined.

Since we seek the earliest and latest finish dates for each drawdown line, we use these

el,p, values to define:

" fL = earliest time period in which drawdown line I finishes being mined among

all five subproblems (= min,{ei,p, })

"* f1 latest time period in which drawdown line 1 finishes being mined among

all five subproblems (= max,{ef,p 8 })
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We consider parameters f-, and fI to provide a heuristic window of time periods in

which a particular drawdown line would finished being mined in an optimal solution to

(P). To enforce this restricted subset of time periods when solving (P'), we formulate

two additional sets of constraints as follows:

-wlt=O VlEL (4.5)
t<f

E wjtl VlEL (4.6)

Constraints (4.5) prevent drawdown line 1 from being completely mined before time

period fl, while constraints (4.6) require that we finish mining drawdown line 1 by

the end of the heuristic window, time period f1. For instances where = f1, we fix

wit = 1 in the solution in that time period. Together, these constraints effectively

reduce the set of potential wIt variables when we append them to (P).

In Step 2b, we apply a related procedure to the machine placements. We first

note that when seeking an optimal schedule, decisions about machine placements

differ fundamentally from those of drawdown lines. Assuming a schedule of two years

or longer (ITI > 24), all drawdown lines must be completely mined (finished) due to

minimum production rates. This requirement facilitates the creation of windows of

time periods during the time horizon for which a drawdown line must finish being

mined. However, most machine placements have late start dates beyond the end

of the time horizon, and therefore might not be mined at all during the schedule.

Enforcing a window similar to that given by (4.5) and (4.6) for a machine placement

start date may be infeasible if its late start date is beyond the end of the time horizon.

When examining each subproblem solution, we note whether a machine place-

ment is mined, and if so, the time period in which mining begins. We check for the
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following conditions, which are not collectively exhaustive, and formulate correspond-

ing constraints:

* If none of the five subproblem solutions prescribe mining machine placement

a at any point during the time horizon, then formulate constraints restricting

(P') from mining machine placement a during the time horizon;

* If three or more subproblem solutions prescribe mining machine placement a

during the time horizon, then formulate constraints forcing (P') to begin mining

machine placement a at some point during the time horizon;

* If all five subproblem solutions prescribe beginning to mine machine placement

a during the same time period, then formulate constraints forcing (P') to begin

to mine machine placement a during that time period.

Note that the third condition is a subset of the second. To implement the appropriate

constraints, we first define the following parameters and sets:

"* Yat,P, = value of Yat in the solution to subproblem (Ps)

"* A° = set of machine placements a for which Yat,P, = 0 V (Ps), t

"• A 3 = set of machine placements a for which Z Yat,P >_ 3
P8 ,t

"* A5 = set of machine placements a for which E Yat,Pa = 5 for time period t
. PS

"* t a = time period for which Yat = 1 for machine placement a E A5 in each

solution to (Ps), s E {B1, B2, D3, 0, U}.

The set A' denotes machine placements for which mining is not started in any

of the subproblem solutions. We may restrict these (unmined) machine placements
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from being mined in (P') with the following constraints:

SyYat=O VaGA° (4.7)
tCTa

To ensure that the solution to (P') denotes beginning to mine all machine placements

in the set A 3 , we use the following set of constraints:

E Yat= 1  VaEA 3  (4.8)
tETa

Finally, we force the solution to (P') to specify beginning to mine machine placements

that belong to the set A 5 during the appropriate time period:

Ya,ia=l VaeA 5  (4.9)

In ('H), Steps 2a and 2b address limiting or setting values for the wit and

Yat binary variables independently. In Step 2c, we simultaneously restrict both wit

and Yat variables with additional heuristic constraints which limit the number of

active machine placements in the mine in each time period. Recall that (i) machine

placements modeled in the short-term (drawdown lines and production blocks) are

already active, and (ii) (P) already restricts the number of active machine placements

within each shaft group with constraints (3.3).

Similar to the previous steps, we use the five subproblem solutions to determine

a heuristic minimum and maximum number of active machine placements (MPs) al-

lowed in each time period, in Step 2c. If we consider the number of active MPs as

a proxy measure for the amount of "mining activity" occurring during a particular

time period, then these constraints restrict the amount of mining activity through-
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out the time horizon. Because we allow all ore types to satisfy the demand for the

ore-type subproblems (see constraints (4.2)), the solutions to these three subprob-

lems ((PBs), (PB2), and (PD3)) generally consist of less mining activity than that in

the optimal solution to (P). Since (Po) minimizes over-deviations, its solution also

represents less mining activity than would be optimal for (P). By contrast, the (Pu)

subproblem minimizes under-deviations, so we may consider its solution to represent

more mining activity than would be optimal for (P). Therefore, we use subproblems

(PB1), (PB2), (PD3), and (Po) to determine the heuristic minimum number of active

MPs and use (Pu) exclusively to determine the heuristic maximum number of active

MPs.

We implement these constraints by first defining the following parameters:

" Blt = number of active MPs in the solution to (PBj) during time period t

"* B2t = number of active MPs in the solution to (PB2) during time period t

"• D3t = number of active MPs in the solution to (PD3) during time period t

"* Ot = number of active MPs in the solution to (Po) during time period t

" Ut = number of active MPs in the solution to (Pu) during time period t

We then define A"'fl and Amax for time period t as

Ai' = max{Blt, B2t, D3t, Or} V t

tA ax=Ut V t

We modify constraints (3.3) to enforce these heuristic bounds with the following:

At'- - pattyat,+Z + (1- w1 -) At VtET1 )tEt, (4.10)
aeAt t'ETa,•5t aEA lCLanLt
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Note that the middle expression counts the number of active machine placements in

time period t, which we then bound by A"' and Ax.

Considering all the additional constraints we formulate during Step 2, we may

define (P') formally as:

(P'):

min Z(pt)(zkt + 0kt)

k,t

subject to: Constraints (3.1) through (3.14), and constraints (4.5), (4.6), (4.7),

(4.8), (4.9), and (4.10).

Note that (P') is (P) with additional constraints generated from (R), Steps 2a

through 2c. In Step 3, we solve (P') to obtain a solution. As when solving the (P,)

subproblems, we impose a time limit when solving (P').

4.2.3 Implementation Guidelines for (R)

Since all subproblems (P,) and (P') remain large MIP problems with sizes com-

parable to (P), we impose time limits on each problem type within (H). Within the

(P,) subproblems, we discriminate subproblems (PD3) and (Pu) from the other three

because the deviations they minimize (under-deviations for the D3 ore type) typically

constitute the majority of the deviations in optimal schedules for (P). Among other

reasons, this characteristic seems to contribute to making them the most difficult

to solve of the subproblems, since the lower bounds seem particularly weak in these

cases. In addition to the time limit, we also impose an optimality gap as a stopping

criterion. The time limits are 250 seconds for the subproblems (P,); for (PD3) and

(Pu) specifically, the criteria are min{250 seconds, 1% optimality gap}. The rationale

for the additional stopping criterion for these two subproblems is twofold: (i) experi-
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mental runs exhibit long solution times (e.g., over 1000 seconds), and (ii) we consider

solutions within 1% of optimality sufficient due to the heuristic nature of the proce-

dure. If subproblems (PD3) and (Pu) run to optimality, their solutions may slightly

alter specific constraints we generate in (H), Step 2. When using optimal solutions

to (PD3) and (Pu) in practice, we realize minimal improvements in the solution of

(P').

From empirical analysis of twelve lengthy (P') runs (e.g., 3000 seconds or more),

we notice that almost all of the improvement (typically, about 95%) in the objective

function is made in the first 750 seconds. Additionally, as we describe in Section 5.1,

we set the solver parameters to aggressively seek an optimal solution, so we expect

improvement in the objective function value to diminish over time. Therefore, we set

"a time limit of 750 seconds when solving (P'). Typically, once the solver encounters

"a near-optimal solution, it spends a high percentage of the remaining solution time

improving the lower bound. Using the example of our baseline 3-year Kiruna model,

which requires over 60 days to achieve a 5% gap, we note that the solver obtains the

ultimate solution approximately 60% into the run-so the final 40% of the run time

merely improves the lower bound.
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Chapter 5

COMPUTATIONAL RESULTS

We present computational results from implementing Heuristic (7-H) described in

Chapter 4 and compare it to solving (P) directly. When executing (R), we incorporate

into the model the previous variable elimination methods based on the early and late

start and finish dates described in Section 4.1. We conduct all numerical experiments

with the AMPL programming language (Fourer et al., 2003; Bell Laboratories, 2001)

and the CPLEX solver, Version 9.1 (ILOG Corporation, 2005). We execute the timed

runs on a Sunblade 1000 computer with 1 GB RAM, while also conducting additional

runs calculating lower bounds on a Beowulf Parallel Cluster with 96 processors and

280 GB of total RAM.

5.1 CPLEX Parameter Settings

We tailor the CPLEX parameter settings to obtain efficient performance for each

of the three problem types: the (Ps) subproblems, (P'), and (P). In general, we rely

on CPLEX's relaxation induced neighborhood search (RINS) heuristic and its MIP

emphasis (MIPEMPHASIS) feature.

Since we wish the five subproblems (P,) to solve to optimality as quickly possible,

we utilize the RINS heuristic heavily (i.e., every 20 nodes) to search for the optimal so-

lution. The MIP emphasis setting we employ directs the branch-and-bound algorithm

to focus on improving the lower bound, rather than finding additional improving so-

lutions. The two settings, while seemingly contradictory, work well together to find
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an optimal or a near-optimal solution very quickly; apparently, this combination is

effective because the subproblems are relatively simple to solve in comparison to (P).

When solving (P'), we assume that we do not easily attain a provably optimal

solution. Instead, we focus on achieving near-optimal solutions as quickly as possible.

We apply the RINS heuristic every 20 nodes and set the MIP emphasis to focus on

finding new feasible solutions. The two settings complement each other, each with

a goal of exploring many feasible (and perhaps improving) solutions without regard

to improving the lower bound. We find this combination best to achieve the goal of

near-optimal solutions in a short time.

As with (P'), we also assume that we do not obtain a provably optimal solution

when solving (P). We again utilize the RINS heuristic to search for improving so-

lutions quickly, without regard to the strength of the lower bound. We apply RINS

every 100 nodes and leave the MIP emphasis at its default setting, which balances

finding new solutions with improving the lower bound. Performing the RINS heuris-

tic at 100-node intervals seems to yield better results than employing the heuristic

more frequently (e.g., every 40 or 60 nodes). Less frequent application of the heuristic

apparently allows more time for the solver to explore various regions of the branch-

and-bound tree, yielding better solutions.

5.2 Original Kiruna Scenario and Perturbed Datasets

Our baseline scenario possesses current data from LKAB's Kiruna mine. The

dataset contains three ore types, and spans three years or 36 (monthly) time periods.

From this scenario, we perturb the dataset in three ways: (i) changing labor avail-

ability, (ii) changing equipment availability, and (iii) changing ore reserves. In (i) and

(ii), we simply rearrange existing mine capacity. We use a proxy in (iii) instead of
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perturbing the ore reserves directly.

At Kiruna, manual labor is required to prepare a machine placement for blast-

ing and subsequent mining. The current Kiruna dataset allows up to two machine

placements to start to be mined each month (LHDt = 2 V t) in constraints (3.4).

Assuming a time horizon of T months, a maximum of 2T machine placements may

start to be mined; we rearrange this capacity among the time periods. We first mod-

ify the dataset by randomly assigning LHDt values between 1 and 3 for each time

period t. We then randomly select time periods from which to add or subtract LHDt

values until Et LHDt = 2T, while ensuring 1 < LHDt <_ 3 V t.

Although individual monthly LHDt values of 1 or 3 represent a decrease or an

increase of 50%, we do not allow four or more subsequent months to have identical

perturbed LHDt values (either 1 or 3). We consider a consistent deviation over that

length of time or greater to be excessive. We correct such excessive deviation by

randomly augmenting or removing capacity (LHDt) within the pattern. In this way,

we ensure that over any four month period, 5 < Et LHDt < 11. Note that in the

baseline dataset, any four-month period would set Et LHDt = 8; here, we are simply

restricting that sum from equaling the extremes of 4 or 12.

Per constraints (3.3), each shaft group v operates either two or three LHDs,

totaling 25 LHDs within the mine. We modify equipment capacity by rearranging

the 25 LHDs among the ten shaft groups. We begin by randomly assigning each shaft

group v either two or three LHDs: 2 < LHDV < 3 V v. Then, in order to maintain

exactly 25 LHDs in the perturbed dataset, we add or subtract LHDs from random

shaft groups, while maintaining 2 < LHDV < 3 in each shaft group. We consider

assigning either 1 or 4 LHDs to one shaft group to be an excessive deviation from the

original scenario.
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We do not have sufficient information to perturb the ore reserves and/or target

demand quantities in a realistic manner. As a proxy for perturbing the ore reserves,

we shorten or lengthen the time horizon (from the baseline of three years) by six

months. This proxy is valid due to the nature of minimizing deviations; for different

time horizons, an optimal solution must minimize deviations from different sets of ore

reserves and demands. The perturbations result in time horizons of 2.5 years and 3.5

years (ITI = 30 and 42, respectively).

We consider each of the three methods of data perturbation to result in realistic

Kiruna scenarios. Note that we simultaneously perturb LHDt and LHDV when

generating the modified datasets, as well as shorten or lengthen the time horizon, as

necessary. Using the baseline Kiruna data and only altering the length of the time

horizon, we obtain three datasets: 2.5-year, 3-year, and 3.5-year. Then, for each time

horizon we generate four additional datasets, yielding a total of 12 perturbed datasets.

We generate each perturbed dataset independently. The three baseline cases and the

12 perturbed datasets yield 15 datasets against which we compare the performance

of (H) to that of solving (P) directly.

5.3 Performance Metrics

To compare the performance of (H) to solving (P) directly, we propose two

approaches. The two methods are based on (i) time elapsed until a particular solution

is obtained, and (ii) objective function value (i.e., solution quality after applying a

particular time limit). For each approach, we maintain consistent CPLEX parameter

settings (e.g., application of the RINS at particular node intervals), as described in

Section 5.1.
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We label the first approach the Time-based Performance Metric (TPM). In this

methodology, we perform the following steps:

1. Run Heuristic (7-) until an optimal (with respect to (P')) solution is obtained

and/or appropriate time limits are reached (250-second time limit for subprob-

lems (P,) and 750-second time limit for (P'))

2. Record the objective function value, VH, and the time required, T-, where

T• < 1000

3. Solve (P) until VH is equaled or just surpassed

4. Record the time required, (Tp)

5. Calculate the metric:

_Tp - T
TPM = Tp- x 100 (%) (5.1)

The TPM metric is a percentage that may be either positive (indicating that

(RH) outperforms solving (P) directly) or negative (indicating the opposite). When

calculating TH, we assume that the five subproblems (Ps) run in parallel, so we assign

only the maximum time (max,{(P8 )} run times) to ('H). To the maximum (P,) run

time, we add the run time for (P') to obtain the total solution time required for ('H),

Th.

We call the second approach the Objective Function Value-based Metric (OFM).

Recall that our model is a minimization problem; lower objective function values are

better. In this methodology, we perform the following steps:

1. Run Heuristic ('H) until an optimal (with respect to (P')) solution is obtained
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and/or appropriate time limits are reached (250-second time limit for subprob-

lems (P,) and 750-second time limit for (P'))

2. Record the objective function value, VW, and the time required, TH, where

TH < 1000

3. Solve (P) for exactly TH seconds

4. Record the corresponding objective function value for (P), (Vp)

5. Calculate the metric:

Vp - YIH
OFM - x 100 (%) (5.2)

Like the TPM metric, the OFM metric is a percentage that may either be

positive (indicating that (H-) outperforms solving (P) directly) or negative (indicating

the opposite). We use these two metrics because, in practice, the Kiruna mine seeks

near-optimal solutions quickly. If (H-() outperforms the default approach of solving (P)

directly, based upon these two metrics, then we may reasonably conclude that it will,

on average, outperform solving (P) directly on realistic datasets. A robust heuristic

would allow Kiruna to experiment with different mining configurations, make minor

corrections to reserve/demand data as necessary, and answer "what-if' questions

based upon realistic scenarios.

5.4 Results

The size of (P) is directly related to the length of the time horizon. For the 2.5-

year models, the problems contain approximately 870 binary variables, 650 continuous

variables, and 2160 constraints. In general, the 3-year models contain 1100 binary
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variables, 690 continuous variables, and 2675 constraints, while the 3.5-year models

contain about 1350 binary variables, 730 continuous variables, and 3260 constraints.

On average, we find that (P') consists of 27% fewer binary variables, 14% fewer

continuous variables, and 21% fewer constraints, when compared to its respective (P)

instance. These reductions from (H-f) are in addition to those we realize after applying

the variable elimination techniques of Section 4.1. We also note that, because of the

heuristic nature of ('H), the reductions come with a risk of chopping off optimal and/or

near-optimal solutions.

5.4.1 Comparison of Solution Times

We compare solution times of (H-) and solving (P) directly and present summary

results in Table 5.1. Each row represents the performance of one of the 15 datasets

and each column represents a specific problem type. Solution times are given, or, if

necessary, in the case of subproblems (PD3), the gap remaining after 250-seconds of

run time. The next two columns show the solution time required for (iH) and the

corresponding solution time for (P) to obtain an equal or better objective function

value than VH, respectively. The final column displays the calculated TPM metric,

referring to the reduction or increase in solution time when comparing (-H) to (P).

We see that subproblems (PB1), (PB2), and (Po) solve to optimality quickly, while

subproblem (PD3) sometimes requires the full 250-second time limit, particularly for

the 3.5-year models. Solving (Pu) to within 1% of optimality never requires the full

250 seconds allotted. In all 15 instances, solving (P') requires 750 seconds and does

not reach optimality (with, respect to (P')). Recall that since we assume that the

(P,) subproblems run in parallel, the run time for ('H), given in column 7, is the sum

of max,{(P8 )} run times and the run time for (P'). We note that the time required
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Time (see) or Gap (%)
Dataset (PB1) (PB2) (PD3) (Po) (Pu) N(-) (P) TPM

2.5-year
(1) 1 1 14 41 14 791 t 99%
(2) 2 3 8 139 32 889 1799 51%
(3) 3 2 4 31 13 781 9274 74%
(4) 2 3 7 55 18 805 753 -7%
(5) 2 2 14 35 11 785 604 -30%
3-year
(6) 3 5 21 37 12 787 1482 47%
(7) 4 5 140 36 35 890 62,270 99%
(8) 9 10 1.52% 52 57 1000 2157 54%

(9) 3 3 137 55 48 887 1611 45%
(10) 4 4 1.24% 41 64 1000 581 -72%
3.5-year
(11) 2 3 1.73% 50 51 1000 2622 62%
(12) 5 5 1.91% 154 136 1000 t 99%
(13) 5 5 1.63% 149 132 1000 12,171 92%
(14) 13 14 2.84% 101 143 1000 t 99%
(15) 6 9 4.30% 40 115 1000 1192 16%

Table 5.1. Comparison of Solution Times. Times are given in seconds for (P,), ('H),

and (P) for 15 datasets. In cases where (P,) reaches the 250-second time limit, we
show the optimality gap (%). t signifies a run we stop at 100,000 seconds. The last
column reports the TPM metric.

for ('H) is less than 1000 seconds for the 2.5-year models, while each of the 3.5-year

models require the full 1000 seconds.

(P) outperforms (R-) in three instances (datasets (4), (5), and (10)). We at-

tribute the strong performance of solving (P) directly on these datasets to CPLEX's

RINS setting. Occasionally, the solver obtains a remarkably strong solution quickly.

However, we note that this occurs more frequently on smaller problems; as the dif-

ficulty of the problems increases (i.e., as the time horizon lengthens to 3.5 years)

(H) consistently outperforms solving (P) directly. Additionally, we emphasize the
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inconsistency of the solution times required when solving (P) directly-in three other

instances, (H) approaches a 100% reduction in solution time with respect to (P).

The t symbolizes a run length of 100,000 seconds in which (P) does not attain an

objective function value equal to or better than V17 . We report 99% as the value for

the TPM metric in datasets (1), (12), and (14); though we do not know the exact

time required for (P), we know that 99% < TPM < 100%. We find the mean TPM

is +48.5%, meaning that, on average, (R-) requires about half the solution time of

(P) to attain a particular solution quality.

1 0 0 % . ... ...................................... . . .............. .. ......... ......... .. .... ...................... • . ....... ........... ... ..... ............ ....................................... ........................ ........................

75%

50%

25%

0%

-25% -

-50%

-75%.

-1 0 0 % ....................................................................................................................................

Figure 5.1. A box plot for the TPM metric. A horizontal line denotes the median of
the dataset. The edges of the box represent the first and third quartiles of the data.
The whiskers report the minimum and maximum values, while an asterisk denotes an
outlier.
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We present additional summary statistics in graphical form; specifically, the box

plot shown in Figure 5.1. The plot displays quantile information, which refers to the

percentage of data below a given value. The median TPM, depicted by the horizontal

line, is 54.0%. The box edges depict the first (Q1) and third (Q3) quartiles (2 5th and

7 5 th percentiles), which are 23.3% and 97.3%, respectively. We note that Q1 lies

well above 0.0%. The whiskers, set at -30.0% and 99.0%, display the minimum and

maximum of the dataset, while the asterisk denotes an outlier datapoint (-72%). We

define an outlier, based on the interquartile range (IQR = Q3 - Q1), as a datapoint

outside the range: J ± 1.5 x IQR, where J denotes the median.

5.4.2 Comparison of Solution Quality

We compare the resulting objective function values and present summary results

in Table 5.2. Each row represents the performance of one of the 15 datasets. Column

2 repeats the total solution time required for (7-R), given in Table 5.1, for comparison

purposes. Columns 3 and 4 display the resulting objective function values for (7-H) and

(P), respectively. The final column displays the calculated OFM metric, referring to

the improvement or degradation in the objective function value when comparing (7-H)

to (P). We see that in the three instances where (P) outperforms (H-), the maximum

degradation in the objective function value is less than 1.5% (dataset (10)). By

contrast, in one instance (dataset (12)), (7H) attains an objective function value almost

16% less than that of (P). We calculate the mean OFM to be +3.19%, meaning that,

on average, (7-H) attains objective function values 3.19% less than those of (P) when

both models are solved for identical time lengths.

We again present additional summary statistics in a box plot, shown in Figure

5.2. The median OFM is 2.79%. Here, Q1 is 0.27% and Q3 is 4.62%. Again, we find
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Sol'n Time Weighted Deviation
Dataset (H) (see) (H-() (P) OFM
2.5-year
(1) 791 41,241 42,423 2.79%
(2) 889 42,986 43,173 0.43%
(3) 781 41,424 43,859 5.55%
(4) 805 43,320 43,183 -0.32%
(5) 785 42,961 42,945 -0.04%
3-year
(6) 787 60,666 61,948 2.07%
(7) 890 61,677 65,681 6.10%
(8) 1000 68,938 69,632 1.00%
(9) 887 64,538 64,682 0.22%
(10) 1000 64,995 64,089 -1.41%
3.5-year
(11) 1000 87,875 91,464 3.92%
(12) 1000 82,808 98,291 15.75%
(13) 1000 83,484 87,710 4.82%
(14) 1000 98,793 102,906 4.00%
(15) 1000 95,612 98,509 2.94%

Table 5.2. Comparison of Solution Quality. For 15 datasets, column 2 repeats solution
times for (Hi). Columns 3 and 4 display Objective Function Values for (7-R) and (P),
respectively. The last column reports the OFM metric.
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Figure 5.2. A box plot for the OFM metric. A horizontal line denotes the median of
the dataset. The edges of the box represent the first and third quartiles of the data.
The whiskers report the minimum and maximum values, while an asterisk denotes an
outlier.

Q1 to lie in the positive region of the graph. The whiskers depict a minimum and

maximum of -1.41% and 6.10%, respectively. We note one outlier (15.75%) denoting

the poor performance of (P) in this instance.

We can extend the performance analysis by applying a statistical hypothesis test

to see whether the expected value (mean) for each metric, E(TPM) and E(OFM),

is greater than zero. Since the sample size is 15 for each test, we use the Student's

t distribution as the basis for the hypothesis test. Applied to the TPM metric, our
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hypotheses are:

Ho: E(TPM) < 0 (5.3)

Hi: E(TPM) > 0 (5.4)

We use a one-tailed test and a 0.05 level of significance. We note that the sample

standard deviation is 0.5196 and the corresponding test statistic is t = 3.495. Since

the critical statistic t.95,14 is 1.753, we may reject H0 and conclude that E(TPM) > 0

with 95% confidence. We approximate the p-value associated with this test statistic

to be 0.0018, which means that we may place up to 99.75% statistical confidence in

our conclusion from the hypothesis test.

Applied to the OFM metric, our hypotheses are:

Ho: E(OFM)• 0 (5.5)

H1 : E(OFM) > 0 (5.6)

We again use a one-tailed t test with a 0.05 level of significance. We calculate the

sample standard deviation to be 0.0416 and the corresponding test statistic is t

2.867. Again, the critical test statistic is t.95 ,14 = 1.753, so we may reject H0 and

conclude that E(OFM) > 0 with 95% confidence. We approximate the p-value

associated with the test statistic to be 0.0062, which means that we would reject the

null hypothesis at a confidence level up to 99%.

Applying ('H) to (P) effectively reduces model size and increases tractability. On

average, if we spend equal time running each method, (7H) produces solutions that

are 3% better than those of (P); if we desire a particular solution quality, ('H) yields

a solution in about half the time required to solve (P) directly. We also find that if
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solving (P) outperforms (H-), the differences are typically small, but when solving (P)

loses to (7-), the loss can be exceptionally large. Parametric statistical hypothesis

tests on these two metrics confirm our conclusion that (H-() outperforms solving (P)

directly on realistic Kiruna datasets.

5.4.3 (H-) Solution Quality

We summarize the quality of solutions that we obtain with ('-H) in Table 5.3.

Due to the difficulty of solving (P) or (P') to optimality, we are not able to state

with exact accuracy the quality of the solutions of these problems. As described

in the introduction to Chapter 4, the branch-and-bound algorithm tracks a "best

bound" (integer-infeasible solution to an LP relaxation problem) for the MIP, which

becomes a basis against which to compare any integer-feasible solution. Since the

objective function minimizes deviations, the best bound is a lower bound on the

optimal amount of deviation. We may then use the lower bound to calculate an

optimality gap associated with a particular solution. We report two different gaps

(each calculated from different bounds), both with respect to solutions that we obtain

with (H-). The results given in the second column of Table 5.3 utilize the resulting

lower bounds associated with solving (P) for TH seconds (i.e., runs used to calculate

the OFM metric). We note that the gaps calculated from these bounds are weak,

never less than 10%. By making separate, lengthy runs, we may obtain stronger

lower bounds for these problem instances, allowing us to reduce the optimality gap,

as shown in third column of the table. We perform these lengthy runs on a Beowulf

Parallel Cluster with 96 processors and 280 GB of total RAM; we use the strongest

CPLEX settings to improve the lower bound. Typical run times are between one

and three weeks, depending on the time horizon of the dataset. Due to these time
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Gap (H-() Gap (H) Abs. dev. Abs. dev.
Dataset (P) L.b. (%) strong 1.b. (%) (7-() (%) th. min. (%)
2.5-year
(1) 15.8 6.00 4.08 2.24
(2) 18.1 7.79 4.60 2.26
(3) 16.3 6.62 4.03 2.25
(4) 14.8 6.07 4.64 2.30
(5) 14.8 4.13 4.91 2.30
3-year
(6) 27.5 7.20 5.00 1.89
(7) 26.2 9.70 4.70 1.94
(8) 31.6 9.77 5.48 2.08
(9) 29.9 11.9 5.60 1.92
(10) 29.3 10.5 5.51 2.02
3.5-year
(11) 40.0 20.8 5.22 1.62
(12) 33.9 - 3.96 1.67
(13) 33.2 - 5.17 1.63
(14) 31.9 - 5.59 1.85
(15) 41.5 - 6.33 1.75

Table 5.3. Solution Quality of (H). For 15 datasets, column 2 displays the opti-
mality gap for solutions of (R) using lower bounds obtained by solving (P) for TH
seconds. Column 3 displays the optimality gap for solutions of (H) using stronger
lower bounds obtained from separate runs. In column 4, we show the percentage of
absolute deviation from the demand using solutions from (H), while the final column
reports the theoretical minimum percentage of absolute deviation.

requirements, we are not able to strengthen the lower bounds for all 15 datasets. At

the time of this writing, we note that, at worst, (N) produces solutions within 8%

of the optimal solution for the 2.5-year time horizon. For the 3-year models, we can

only prove optimality to within 12%, while the difficulty obtaining strong bounds for

3.5-year models prevents us from stating specific optimality gaps less than 20%.

We employ another measure to demonstrate the effectiveness of (N) in pro-

ducing strong schedules in a timely manner. Note that the total demand for the
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2.5-year, 3-year, and 3.5-year time horizons are 59,052, 71,334, and 83,616 ktons, re-

spectively. For a particular solution to (H-t), we use the total absolute deviation (i.e.,

Ekt(&kt- + -kt)) and calculate a corresponding percentage of deviation from total de-

mand. We report these percentages in column 4 of Table 5.3. Further, if we unweight

the objective function (i.e., let Pt = 1 V t), then we may consider the solution to the

root-node LP relaxation a "theoretical minimum" on the amount of deviation for a

given problem instance. Likewise, we may calculate a theoretical minimum percent-

age of deviation, which we show in the final column of Table 5.3. We note that, on

average, the percentage of absolute deviation we obtain with (7-H) is approximately

5%, while the theoretical minimum percentage is about 2%. Currently, the long-term

model in use at Kiruna results in schedules with total deviation of about 10%.
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Chapter 6

LIMITATIONS AND EXTENSIONS

We have just shown the effectiveness of solving Kiruna scheduling models with

Heuristic (7-). In this chapter, we discuss the limitations of (7-R) and potential exten-

sions to the methodology.

6.1 Limitations

When seeking near-optimal solutions to realistic Kiruna scheduling problems, we

consider (7H) a better alternative to solving (P) directly; however, we also recognize

various limitations when applying (7-R). We categorize these limitations as: (i) a weak

lower bound, (ii) degraded performance when applying (7-H) to datasets that deviate

excessively from what we consider realistic, and (iii) inappropriate time limits when

solving component problems of (7-H) in models with different time horizons.

6.1.1 Weak Lower Bound

As already mentioned in Section 5.4.3, the most significant limitation when at-

tempting to solve either (P) or (P') to optimality is the weak lower bound. Weak

lower bounds prevent proof of optimality for a particular solution. A typical reason

why weak lower bounds occur (in minimization problems) includes an LP relaxation

solution at the root node with numerous fractional values for its binary variables. We

cannot identify a method to eliminate fractions in the initial LP relaxation solution,

as we now discuss.
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One method used to improve the lower bound is by adding valid inequalities,

also known as cuts, to the formulation. Cuts should chop off otherwise-optimal LP

relaxation solutions from the feasible region, while simultaneously not excising any

integer-feasible solutions. Typically, cuts require a summation of binary variables to

be greater than or equal to a constant, say bt (referring to time period t). We explored

various ideas to generate valid and useful cuts applied to the minimum number of

active machine placements in each time period. The cuts would assume the following

form:

Yat±Zwit > bt Vt (6.1)
a

Note that (6.1) resembles our heuristic implementation of Step 2c of (H-), as given in

constraints (4.10) of Section 4.2. Here, we seek to specify a valid minimum number of

active machine placements for each time period. When we compare the LP relaxation

solution to an optimal integer solution, we find that in most time periods, a cut

would not be useful. For example, in a particular time period, the LP relaxation

solution may have 17.2 machine placements active, while the optimal solution has 17

machine placements active. In this case, specifying 17 active machine placements as a

minimum would not be useful-the cut does not excise the LP relaxation solution. In

instances where a cut would be useful, we have difficulty obtaining the effective right-

hand side constants (bt) easily. Initially, we attempted to simplify (P) by omitting

individual constraint sets (e.g., constraints (3.4)), such that the resulting problem

solves quickly. We expected the solution of this reduced problem to yield valid bt

values. In our experiments, we found no instances where this methodology produced

valid and useful right-hand side constants.

Another possible method for obtaining valid right-hand side constants uses the
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minimum production rates for the short-term production blocks. We may use the

minimum production rates Cat (given in constraints (3.9)), to derive the number of

drawdown lines that must finish in each time period. Note that this cut would take

the form:

wit > bt V t (6.2)

However, the resulting cuts are not useful because the late finish date (within the set

TI) for each drawdown line adequately satisfies this minimum production requirement.

We also attempted to improve the lower bound with additional constraints using

auxiliary variables. This implementation applied only to machine placements that

must start to be mined within the time horizon. We created two sets of auxiliary

variables, where the first set represented the aggregate amount of ore mined from a

machine placement and the second set represented the sum of one or more Yat vari-

ables. By formulating constraints linking the auxiliary variables to the Yat variables,

we could give branching priority to the latter set of auxiliary variables, which would

drive the yat variables to integral values. The integral yat values in the optimal solu-

tion to the root-node LP relaxation problem should result in a much stronger lower

bound. This implementation added a substantial number of binary variables to the

model, and we found no noticeable improvements to the lower bound.

A crucial difficulty that we encounter when attempting to generate cuts (6.1) and

(6.2) is due to the fact that it is not necessary to satisfy demand. Theoretically, our

model allows "do nothing" (aside from short-term minimum production rates Cat) as

a feasible solution, albeit one with a poor objective function value. If requirements

to fulfill demand existed, we could use these requirements to generate lower bounds.

As an example of valid inequalities based on inventory bounds, generated in the
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context of a lot-sizing problem, we refer the reader to Atamtiirk & Kiiqiikyavuz (2005).

Since the Kiruna mine seeks minimum deviations from planned production quantities,

our model elasticizes the demand accounting constraints (3.1). These elasticized

constraints do not support valid inequalities based upon satisfying demand.

6.1.2 Unrealistic Datasets

The primary issue when generating the perturbed datasets of Section 5.2 is ensur-

ing that the datasets remain realistic. Because of the complexity of the relationships

between Kiruna mine geometry and the balance of mine production capacity with

demand quantities, we find realistic datasets difficult to generate.

In terms of perturbing the number of machine placement starts (LHDt), recall

that we allow a deviation of 1 from the original two per time period (= 2 ± 1).

This change represents a 50% deviation for that one time period, but we consider

such deviation in successive months unrealistic. Therefore, we enforce the rule (as

stated in Section 5.2) that LHDt = LHDtj (either 1 or 3) for a maximum of three

consecutive months. Since the number of machine placements starts is a measure of

labor availability, we consider such deviations (effectively, a 50% increase or decrease)

over multiple months to be excessive.

We also consider reducing the number of LHDs within a shaft group (LHDV)

to 1 or increasing it to 4 to be unrealistic. This principle leads to our perturbation

rules detailed in Section 5.2 when modifying LHDV. Additionally, we find that when

the number of LHDs in certain shaft groups is reduced to only one, the problem

instance becomes infeasible; this infeasibility occurs in not satisfying minimum pro-

duction rates (Qt) within production blocks (constraints (3.3)). Since we maintain

a consistent number of LHDs within the mine (25), we consider assigning 4 LHDs
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to certain shaft groups also to be unrealistic. We ensure representative datasets by

simply rearranging the 25 LHDs, placing either 2 or 3 LHDs within each shaft group.

This arrangement reflects the current LHD assignments of the Kiruna mine.

Initially, as a proxy for altering ore reserves, we randomly perturbed the demand

quantities. However, given the absence of information about how these values might

change, and the fact that the demand quantities are a result of long-term contracts set

by Kiruna and the post-processing mills, i.e., they are fixed and not subject to change,

we decided to hold the ore reserves and demands constant. Instead, we altered the

time horizon as described in Section 5.2.

In addition to being unrealistic, we observe that (7-R) behaves differently on such

datasets, rarely outperforming solving (P) directly.

6.1.3 Specified Time Limits

We note that we tailor the problem time limits in (7H) specifically for the three-

year time horizon. We recognize the time limits (250 seconds for subproblem (P,),

750 seconds for (P')) as limitations if we change the length of the time horizon.

Specifically, we consider the time limits excessive when the time horizon is two years

or less; we consider the time limits inadequate when the time horizon is four years or

longer. When we test (R-f) against the baseline Kiruna data with a four-year horizon,

250 seconds is insufficient for (Pu) to obtain a feasible integer solution. We explain

in Section 6.2 how one might resolve this timing issue.

6.2 Extensions

Based upon the results presented in Section 5.4, we show that (7H) is also effective

for time horizons of both 2.5 years and 3.5 years. If we desire to solve models with
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either the two-year or four-year time horizons, modifications to (H-f) would likely be

necessary.

Because the two-year model is relatively simple when compared to models with

longer time horizons, we do not expect significant gains from a procedure similar to

(7-H) applied to a two-year model. Possible modifications to (H-f) include reducing the

time limits on both the subproblems (P,) and (P') or changing the way in which we

use information from the subproblem solutions when generating constraints to form

(P').

Initially, one issue we encounter when applying (7-f) to'the four-year model with

baseline Kiruna data is insufficient time for subproblem (Pu) to yield a feasible integer

solution. A simple extension to the 250-second time limit would most likely solve this

issue. Additionally, we note that the CPLEX settings for the subproblems (RINS

heuristic every 20 nodes, emphasis on the lower bound) could be altered (i.e., shift

emphasis to finding feasible solutions). When we change the MIP emphasis in this

manner and execute (R-f), we obtain a solution to (Pu) within 1% of optimality in less

than 150 seconds. Utilizing this feasible (Pu) solution, we formulate and solve (P') for

750 seconds to obtain an objective function value of 117,230. If we run (P) for 1000

seconds (i.e., (7-f)'s solution time), the resulting objective function is 122,022, which

represents a 4% increase. If we continue solving (P) so that the objective function

matches that of (P'), (P) requires a total solution time in excess of 5700 seconds.

Since Kiruna is interested in solving scheduling models with longer time hori-

zons with combined resolution, the four-year example is a particularly interesting

extension. One may also explore additional methods for generating cuts that would

improve the lower bound.
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Chapter 7

CONCLUSION

LKAB's Kiruna underground iron ore mine employs large-scale sublevel caving

to extract three different ore types. The Kiruna mine is divided, given in order of

increasing resolution, into: shaft groups, machine placements, drawdown lines, and

production blocks. In its production scheduling, Kiruna seeks to minimize deviations

from planned demand quantities. Previous scheduling (done by hand) would result

in schedules that were either infeasible (with respect to operational and sequencing

constraints) or highly suboptimal (consisting of deviations averaging about 15% from

demand quantities). More recently, Kiruna has been using a long-term (machine-

placement only) resolution mixed-integer programming model.

To optimize production scheduling at Kiruna, we enhance the existing long-

term model and present a combined (short- and long-term resolution) model, also

using mixed-integer programming. The model minimizes deviations for a production

schedule with monthly time periods and incorporates various operational require-

ments unique to sublevel caving. However, the resulting model is large and solution

times for schedules of requisite length are excessive.

Previous solution techniques utilized for the long-term model include variable

elimination based on sequencing constraints. To expedite solution time further, we

develop a decomposition-based heuristic consisting of two phases: (i) solving five

subproblems, and (ii) solving a modified version of the original model, based on in-

formation gained from the subproblem solutions. The subproblems primarily modify
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the objective function and capture "extreme" cases the original model must consider

when minimizing deviations. Since typical decomposition techniques would decom-

pose the problem by time and/or by space, we consider our approach to be a unique

contribution.

We compare performance of the heuristic to solving the original model directly

on 15 datasets. On average, we find that our heuristic obtains better solutions faster

than solving the original problem directly. We also note the consistency of the heuris-

tic when compared to the default solution method. In instances where the default

method outperforms the heuristic, the differences are minimal; however, when the

heuristic outperforms the default method, the results may be extreme. In general,

the heuristic produces schedules that only deviate from the demand quantities by a

total of about 5% in 1000 seconds or less. We consider the heuristic to contribute to

solving the production scheduling problem at the Kiruna mine. A robust heuristic

such as ours allows Kiruna to experiment with different mining configurations, make

minor corrections to reserve/demand data as necessary, and answer "what-if' ques-

tions based upon realistic scenarios. Additionally, this decomposition scheme would

apply not only to other mines with similar objectives, but also to other scheduling

problems where deviation from planned production quantities, based on a resource-

constrained scenario, is minimized.

We present various limitations to our approach, primarily discussing the weak

lower bound that we encounter and the difficulties associated with resolving this issue.

We discuss the importance of applying the heuristic to realistic datasets and how our

specified time limits (based on the three-year model) may be inappropriate when the

time horizon changes significantly. We also suggest possible extensions by modifying

the heuristic when solving for schedules of greater length.
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